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Photon propagation affected by vacuum Four photons interacting through vacuum
fluctuations. flucutations.

G. V. Dunne, “Heisenberg-Euler Effective Lagrangians : Basics and Extensions,” 82 (2004).
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beam.
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Goal
Observe Quantum Electrodynamics (QED) effects with ultra-intense laser fields.

x

Why lasers? << 77

- Probe photon-photon interactions
directly.

- Way cheaper.

Necessitates high intensities. How?
That's easy to model, no?
Ray focusing properties of a parabolic mirror.

P. Varga and P. Térok, “Focusing of electromagnetic waves by paraboloid mirrors. I. Theory,” J. Opt. Soc. Am. A 17, 2081-2089 (2000).
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STRATTON-CHU EQUATIONS

E(r, k) = % /S (ik(A x Bs)G + (A x Es) x VsG + (A - Es)VsG} - dS

1
+ m (VsG)BS - de,

B(r,R) = / {—IK( n x Es)G + (n X Bs) x VsG + (n Bs)VsG}-dS

1

- m 83(V§G)E$ N dﬁ,

F. Fillion-Gourdeau, C. Lefebvre, and S. MacLean, “Scheme for the detection of mixing processes in vacuum,” Phys. Rev. A 91, (2015).
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B(r, k) :/Sf3(3,5, G).ds+7g3f4(5,f, 6)- de
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Problem Statement

Numerically evaluate the Stratton-Chu integrals for any mirror S and for any incident laser
field Es, Bs.
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STRATTON-CHU EQUATIONS

Problem Statement

Numerically evaluate the Stratton-Chu integrals for any mirror S and for any incident laser
field Es, Bs.

- Multi-scale algorithm.

Meter-scale parabola, nanoscale focal spot.

F. Fillion-Gourdeau, C. Lefebvre, and S. MacLean, “Scheme for the detection of mixing processes in vacuum,” Phys. Rev. A 91, (2015).
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Problem Statement

Numerically evaluate the Stratton-Chu integrals for any mirror S and for any incident laser
field Es, Bs.

- Multi-scale algorithm.

- No geometrical optics approximation.

Ray optics approximation.

F. Fillion-Gourdeau, C. Lefebvre, and S. MacLean, “Scheme for the detection of mixing processes in vacuum,” Phys. Rev. A 91, (2015). 4



STRATTON-CHU EQUATIONS

Problem Statement

Numerically evaluate the Stratton-Chu integrals for any mirror S and for any incident laser
field Es, Bs.

- Multi-scale algorithm.

- No geometrical optics approximation.

Reflection problem.

F. Fillion-Gourdeau, C. Lefebvre, and S. MacLean, “Scheme for the detection of mixing processes in vacuum,” Phys. Rev. A 91, (2015).



STRATTON-CHU EQUATIONS

Problem Statement

Numerically evaluate the Stratton-Chu integrals for any mirror S and for any incident laser
field Es, Bs.

- Multi-scale algorithm.

- No geometrical optics approximation.

- Actually solves the reflection problem.

Reflection problem.

F. Fillion-Gourdeau, C. Lefebvre, and S. MacLean, “Scheme for the detection of mixing processes in vacuum,” Phys. Rev. A 91, (2015).



STRATTON-CHU EQUATIONS

Problem Statement

Numerically evaluate the Stratton-Chu integrals for any mirror S and for any incident laser
field Es, Bs.
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80 - Relatively heavy to evaluate numerically

&0 (relative to analytical models [~ ms]).

Time (minutes)

40

20

0
12 4 6 8 12 24
Number of processors

Run times for relatively small simulations.
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F. Fillion-Gourdeau, C. Lefebvre, and S. MacLean, “Scheme for the detection of mixing processes in vacuum,” Phys. Rev. A 91, (2015).



STRATTON-CHU EQUATIONS

Problem Statement

Numerically evaluate the Stratton-Chu integrals for any mirror S and for any incident laser
field Es, Bs.

- Relatively heavy to evaluate numerically
(relative to analytical models [~ ms]).

- Difficulty in generalizing to arbitrary
mirror geometries.

Offset parabola. Difficult to represent with
current data structures.

F. Fillion-Gourdeau, C. Lefebvre, and S. MacLean, “Scheme for the detection of mixing processes in vacuum,” Phys. Rev. A 91, (2015).
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Problem Statement
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Problem Statement

Numerically evaluate the Stratton-Chu integrals for any mirror S and for any incident laser
field Es, Bs.
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- Relatively heavy to evaluate numerically
(relative to analytical models [~ ms]).

L

— N

i - Difficulty in generalizing to arbitrary
02 04 06 05 10 12 mirror geometries.

Radial position on the mirror X101
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- Rapidly oscillating integrals must be

Sample of integrand on a parabolic mirror evaluated far from the focus.

for an observation point 100 wavelengths 4

A~irrs ~FFlA ~A~A At~ A~ L~



STRATTON-CHU EQUATIONS

Problem Statement

Numerically evaluate the Stratton-Chu integrals for any mirror S and for any incident laser
field Es, Bs.

- Relatively heavy to evaluate numerically

. Multi-scale algorithm, (relative to analytical models [~ ms]).

- Difficulty in generalizing to arbitrary

- No geometrical optics approximation. . .
mirror geometries.

- Actually solves the reflection problem. ) .
- Rapidly oscillating integrals must be

evaluated far from the focus.

F. Fillion-Gourdeau, C. Lefebvre, and S. MacLean, “Scheme for the detection of mixing processes in vacuum,” Phys. Rev. A 91, (2015).
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|

Global
MPI Parallelization (’Distributed
- Focal spot decomposed on multiple %

processors.

Parabolic mirror (integration domain) is
global. Focal spot (result of the integral) is 6
distributed
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MPI Parallelization

- Focal spot decomposed on multiple
processors. sum

- Integration between two decomposed
domains.

Data on one processor is the result of 6

ntacratinn ~Avar all nraraceAre
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MPI Parallelization o
o 60}
- Focal spot decomposed on multiple & 20
processors. £
_ = 20}
- Integration between two decomposed
domains. 2 6 8 12
- Fast parallel output with HDFS. Number of processors

Estimated write speeds for a small
simulation. Open|SpeedShop for exclusive
time in __write divided by size of output.



FEATURES OF THE PROGRAM

<?zml version="1.0" 2>

<!DOCTYPE Xdmf SYSTEM "Xdmf.dtd" []>
<Xdmf Version="2.1">
<Domain>

<Grid Name="Simulation" GridType="Collection"
CollectionType="Spatial">
<Grid Name="EMFieldMany" GridType="Uniform">
<Topology TopologyType="3DRectMesh"
Dimen: ns="40 40 40 "/> H H
httribute tn ‘ Visualization
Name="Er-0O-amplitude" Center=
<Dataltem Dime ions="40 40 40 " Nuw
Precision="8" Format="HDF5" Endian="Big">

- Use of XDMF to visualize HDF5 data in

Field_reflected.hdf5:/field/Er-0/amplitude i
</Dataltem> Pa raVIeW.
</Attribute>
<Geometry GeometryType="VXVYVZ">

<Dataltem r" Dimensions="40" NumberType="Float"
on="8" Forma HDF5" Big">
Field_reflected.hdf5:/coordinates/r

</Dataltem>

</Dataltem></Geometry></Grid></Grid></Domain>
</Xdmf>

Sample XDMF code.



FEATURES OF THE PROGRAM

Visualization

- Use of XDMF to visualize HDF5 data in
ParaView.

- Access to both the and time
domains.
fi)

Single frequency component at the
geometrical focus.



FEATURES OF THE PROGRAM

Visualization

- Use of XDMF to visualize HDF5 data in
ParaView.

- Access to both the frequency and time
domains.

Snapshop of the field in the geometrical
focal spot.
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PARALLEL EFFICIENCY/SCALING

Low amount of communication needed makes for an ideal algorithm for parallelization. It
has strong scaling.

25

Efficacité

12 4 6 8 12 24 -012468 12 24
Number of processors Nombre de processeurs
Speed up as a function of the number of Parallel efficiency as a function of the number
processors for a given configuration. of processors for a given configuration. 8



TEMPORAL EVOLUTION OF THE FIELD

Snapshop of the field in the geometric focal 3D snapshot of the field in the focal region.
plane.
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