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Scattering Matrix Resonances / Quasi-Bound States

What is Resonance?

�

�ψinc
�

�

�ψsca
�

Outside the dielectric, we solve
Helmholtz’ equation:

�

∇2 + n2k2
��

�ψ
�

= 0.

�

�ψsca
�

= S
�

�ψinc
�

Poles of |detS(k)| with k ∈ C
(S(k) = representation of S ).
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Scattering Matrix Resonances / Quasi-Bound States

What Is Resonance?

Can we find a set of real energy levels for an
open dielectric cavity?
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Scattering Matrix Energy Formalism

Delay due to the Cavity

Average E.M. Energy

EV =
1

2

∫∫∫

RV

[εE∗ · E+µH∗ ·H]d3r

Outside the cavity (r> R0), the modes are

ψm = H(−)
m (nokr)eimθ +

∑

`

Sm`H
(+)
`

(nokr)ei`θ

Coupling between modes:

EV
mm′ =

1

2

∫∫∫

RV

�

εE∗m · Em′

+µH∗m ·Hm′
�

d3r

R0

RV
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Scattering Matrix Energy Formalism

Delay due to the Cavity

E∞mm′ = lim
RV→∞

4n0RVw

k
δmm′ +

2w

k

 

−i
∑

`

S∗`m
∂ S`m′

∂ k

!

E0
mm′ : diverging free space

energy of the beam.

Q =−iS† ∂ S
∂ k
: complex coupling

between angular momentum
channels → excess energy due
to the cavity → delay times.
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Scattering Matrix Time Delay

Resonances ↔ Time Delay

Characteristic Modes of the Cavity
The field is given by

ψp =
∑

m

h

Ap
mH(−)

m (nkr) + Bp
mH(+)

m (nkr)
i

eimθ .

and
B = SA.

Setting up the eigenvalue problem:

QAp = τpAp.

τp are the delay times and represent the time the energy of the
mode described by Ap spends inside the cavity.
Resonances appear as peaks in the delay spectrum (τp vs. k).
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Scattering Matrix Time Delay

Resonances ↔ Time Delay
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Numerical Construction

Construction of the S-matrix
Goal
Compute S for arbitrary geometries and arbitrary refractive index profiles.

Divide in concentric shells
Solve angular part in Fourier
series
Connect the shells
Isolate S from B = SA.

A. I. Rahachou and I. V. Zozoulenko, Appl. Opt. (43), 1761 (2004).
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Applications Numerical Results

Example Applications of the Method
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Applications Numerical Results

Ellipse (integrable geometry)
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Applications Numerical Results

Square (corners + high delay)

kR
0

cτ
/R

0

 

 

4.5 4.52 4.54 4.56 4.58 4.6
10

0

10
1

10
2

10
3

10
4

10
5

 mode

W.-H. Guo et al, IEEE J. of Qu. El. (39),
1106 (2003).

Re
�

kR0
	

= 4.54

| Im
�

kR0
	

|= 1.05× 10−4

kR0 = 4.53

2R0/cτ= 1.06× 10−4

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 18 / 28



Applications Numerical Results

Stadium (composite structure)

kR
0

cτ
/R

0

 

 

4  4.5 5  5.5
10

0

10
1

10
2

mode

S.-Y. Lee et al, Phys. Rev. A (70), 023809
(2004).

Re
�

kR0
	

= 4.89

| Im
�

kR0
	

|= 0.055

kR0 = 4.89

2R0/cτ= 0.052

J. Dumont (U. Laval) S and Q Matrices Reloaded ICTON 2013 19 / 28



Applications Numerical Results

Photonic Complex
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Applications Numerical Results

Annular cavity (closed-form, holey cavity)
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Applications Outlooks

Outlooks

TE Modes & µ 6= 1
Equations to solve inside the
cavity become

�

∇2 + n2k2
�

Ez =
1

µ
∇µ · ∇Ez

�

∇2 + n2k2
�

Hz =
1

ε
∇ε · ∇Hz

for TM and TE, respectively,
and boundary conditions
depend on both µ and ε.

Full 3D
Possible and theoretically
similar, but poses some
numerical challenges.
Steady-state ab initio laser
theory (SALT)
Quasibound states as guides to
constant flux states.
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Conclusion

Conclusion

Primary Findings
Scattering description for the S-matrix and its associated delay
matrix Q

Characteristic modes = eigenvectors Ap of the Q-matrix that
undergo a simple phase shift in the presence of the cavity, i.e.
self-replicating waves.
Resonances = peaks in τp vs. k (form a subset of the characteristic
modes).
Computable quantities: Field in all space, resonance position (real
wavenumber), resonance width (real delay) and quality factor Q.
Approach applicable to open, continuously inhomogeneous cavities
of arbitrary geometry.
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Convergence

Homogeneous Disk
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Figure 1 : Maximum error in the elements of the numerical scattering matrix
with respect to the size of the annuli.
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