###
API Reference for Complex_Bessel

We here describe the functions that are accessible to the user of Complex_Bessel.

#### Bessel Functions

besselJ(n,z) |
Bessel function of the first kind and real order n. |

besselY(n,z) |
Bessel function of the second kind and real order n. |

besselI(n,z) |
Modified Bessel function of the first kind and real order n. |

besselK(n,z) |
Modified Bessel function of the second kind and real order n. |

hankelH1(n,z) |
Hankel function of the first kind and integer real n. |

hankelH2(n,z) |
Hankel function of the second kind and integer real n. |

#### Derivatives of Bessel Functions

besselJp(n,z[, m]) |
mth derivative of the Bessel function of the first kind and real order n. |

besselYp(n,z[, m]) |
mth derivative of the Bessel function of the second kind and real order n. |

besselIp(n,z[, m]) |
mth derivative of the modified Bessel function of the first kind and real order n. |

besselKp(n,z[, m]) |
mth derivative of the modified Bessel function of the second kind and real order n. |

hankelH1p(n,z[, m]) |
mth derivative of the Hankel function of the first kind and real order n. |

hankelH2p(n,z[, m]) |
mth derivative of the Hankel function of the second kind and real order n. |

#### Spherical Bessel Functions

sph_besselJ(n,z) |
Spherical Bessel function of the first kind and real order n. |

sph_besselY(n,z) |
Spherical Bessel function of the second kind and real order n. |

sph_hankelH1(n,z) |
Spherical Hankel function of the first kind and integer real n. |

sph_hankelH2(n,z) |
Spherical Hankel function of the second kind and integer real n. |

#### Airy Functions

airy(z) |
Airy function of the first kind. |

airyp(z) |
First derivative of the Airy function of the first kind. |

biry(z) |
Airy function of the second kind. |

biryp(z) |
First derivative of the Airy function of the first kind. |