Complex_Bessel

A C++ library to evaluate Bessel functions of all kinds.

Download .zip Download .tar.gz View on GitHub


API Reference for Complex_Bessel

We here describe the functions that are accessible to the user of Complex_Bessel.

Bessel Functions

besselJ(n,z) Bessel function of the first kind and real order n.
besselY(n,z) Bessel function of the second kind and real order n.
besselI(n,z) Modified Bessel function of the first kind and real order n.
besselK(n,z) Modified Bessel function of the second kind and real order n.
hankelH1(n,z) Hankel function of the first kind and integer real n.
hankelH2(n,z) Hankel function of the second kind and integer real n.

Derivatives of Bessel Functions

besselJp(n,z[, m]) mth derivative of the Bessel function of the first kind and real order n.
besselYp(n,z[, m]) mth derivative of the Bessel function of the second kind and real order n.
besselIp(n,z[, m]) mth derivative of the modified Bessel function of the first kind and real order n.
besselKp(n,z[, m]) mth derivative of the modified Bessel function of the second kind and real order n.
hankelH1p(n,z[, m]) mth derivative of the Hankel function of the first kind and real order n.
hankelH2p(n,z[, m]) mth derivative of the Hankel function of the second kind and real order n.

Spherical Bessel Functions

sph_besselJ(n,z) Spherical Bessel function of the first kind and real order n.
sph_besselY(n,z) Spherical Bessel function of the second kind and real order n.
sph_hankelH1(n,z) Spherical Hankel function of the first kind and integer real n.
sph_hankelH2(n,z) Spherical Hankel function of the second kind and integer real n.

Airy Functions

airy(z) Airy function of the first kind.
airyp(z) First derivative of the Airy function of the first kind.
biry(z) Airy function of the second kind.
biryp(z) First derivative of the Airy function of the first kind.